$\oint 7 . K Z$ equation and representations of braid groups

Recall:
Braid group B_{n} on n strands has generators:

satisfying the relations

- $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad i=1, \ldots, n-2$
- $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad|i-j|>1$

Want to relate this braid group to

$$
\operatorname{Conf}_{n}(\mathbb{C})=\mathbb{C}^{n} \bigcup_{i<j} H_{i j}
$$

where $H_{i j}$ denotes the hyperplane $z_{i}=z_{j}$. in \mathbb{C}^{n}. Note that symmetric group S_{n} acts
on Conf (\mathbb{C}) by permutation of coordinates.
Then we have $B_{n}=\pi_{1}\left(Y_{n}\right)$ where

$$
Y_{n}=\operatorname{Conf}(\mathbb{C}) / S_{n}
$$

We have the exact sequence

$$
\begin{aligned}
\mid \longrightarrow P_{n} \longrightarrow B_{n} \longrightarrow S_{n} \longrightarrow 1 \\
\pi_{1}\left(\operatorname{Conf}_{n}^{\prime \prime}(\mathbb{C}), x_{0}\right)
\end{aligned}
$$

P_{n} is also called "pure braid group".
we consider logarithmic differential 1 -forms

$$
w_{i j}=d \log \left(z_{i}-z_{j}\right)=\frac{d z_{i}-d z_{i}}{z_{i}-z_{j}}, i \neq j
$$

defined on Conf (\mathbb{C}). They satisfy

$$
\omega_{i j} \wedge \omega_{j k}+\omega_{j k} \wedge \omega_{i k}+\omega_{i k} \wedge \omega_{i j}=0, i<j<k,
$$

called "Arnold relations", generators of cohomology ring $H^{*}(\operatorname{Conf}(C), \mathbb{Z})$.

Let E be a trivial vector bundle over Coufu(c) with fiber $\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}^{*}\right)$

$$
=\operatorname{Hom}_{\mathbb{C}}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}, \mathbb{C}\right)
$$

Regard w as a 1-form on Conf (C) with values in End $\left(V_{1}^{*} \otimes V_{2}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$. Define connection on E by $\nabla=d-\omega$.
\longrightarrow flat since $d \omega+\omega \wedge \omega=0$
\longrightarrow horizontal sections are solutions of $k z-e q: \nabla \Phi=0$.
Holonomy:
Let r be a loop in Conf (\mathbb{C}) with base point x_{0}. Then system of solutions $\left(\Phi_{1}, \ldots, \Phi_{m}\right)$ trasforms along γ as

$$
\left(\Phi_{1}, \ldots, \Phi_{m}\right) \theta(\gamma), m=\operatorname{dim}_{1} V_{1} \times \ldots \times \operatorname{dim} V_{n}
$$

by a matrix $\theta(\gamma)$ only depending on the homotopy class of γ since ∇ is flat
connection.

$$
\longrightarrow \theta: P_{n} \rightarrow G L\left(V_{1}^{*} \otimes V_{2}^{*} \otimes \cdots \otimes V_{n}^{*}\right)
$$

with parameter K : "monodromy representation" of $K Z$ equation. We have

$$
\theta(\sigma \tau)=\theta(\sigma) \theta(\tau) \quad \forall \sigma, \tau \in P_{n} .
$$

Thus we have arrived at the following:
Proposition 1:
For any complex semisimple Lie algebra of and its representations $p_{j}:$ of $\rightarrow E n d\left(V_{j}\right)$, $1 \leq j \leq n$, the holonomy of the $k z$ connection ∇ gives linear representation of the pure braid group with a parameter K. In the case $V_{1}=V_{2}=\ldots=V_{n}=V_{1}$, the symmetric group S_{n} acts diagonally on the total space Conf $(\mathbb{C}) \times\left(V^{\infty n}\right)^{*}$, where action of S_{n} on $\left(V^{\Delta n}\right) *$ is given by

$$
(\phi \cdot \sigma)\left(v_{1} \otimes \ldots \otimes v_{n}\right)=\phi\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
$$

for $\phi \in\left(V^{\otimes n}\right)^{*}, \sigma \in S_{n}$ and $v_{j} \in V_{j,} 1 \leq j \leqslant n$.
$\longrightarrow \nabla$ descends to a connection on quotient space $F=\operatorname{Conf}(\mathbb{C}) x_{s_{n}}\left(V^{*}\right)^{8 n}$ with holonomy given by braid group:

$$
\theta: B_{n} \rightarrow G L\left(\left(V^{*}\right)^{8 n}\right)
$$

Let us return to the situation of the space of conformal blocks for the Riemann sphere for of $=\operatorname{sl}_{2}(\mathbb{C})$ at level $k(\operatorname{see} \delta 4)$.
Take four distinct points on $\mathbb{C} \mathbb{P}: p_{1}, p_{2}, p_{3}$ and $p_{4}=\infty$. Fix a global coordinate function z and set $z\left(p_{j}\right)=z_{j}, j=1,2,3$. Consider now the space of conformal blocks

$$
\begin{aligned}
& \mathcal{H}\left(p_{1}, p_{2}, p_{3}, p_{4} ; \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}^{*}\right) \\
& \longleftrightarrow H \operatorname{lom}_{0 g}\left(V_{\lambda_{1}} \otimes V_{\lambda_{2}} \otimes V_{\lambda_{3}} \otimes V_{\lambda_{4}}^{*}, \mathbb{C}\right)
\end{aligned}
$$

(see Lemma in $\delta 4$)
\longrightarrow conformal block bundle E over Conf (C) admits flat $k z$-connection ∇ with $k=k+2$
introduce coordinates $\left.\zeta_{1}=z_{2}-z_{1},\right\}_{2}=z_{3}-z_{1}$
and perform coordinate transformation

$$
\zeta_{1}=u_{1} u_{2}, \quad \zeta_{2}=u_{2}
$$

(or $u_{1}=\frac{z_{1}-z_{2}}{z_{1}-z_{3}}, u_{2}=z_{3}-z_{1}$)

$$
\longrightarrow w=\frac{1}{k}\left(\frac{\Omega^{(12)}}{u_{1}} d u_{1}+\frac{\Omega^{(12)}+\Omega^{(13)}+\Omega^{(23)}}{u_{2}} d u_{2}+\omega_{1}\right)(*)
$$

(see Prop. 5, §6)
where w_{1} is hob. 1-form around $u_{1}=u_{2}=0$.
We have
(a) $\operatorname{Res}_{u_{1}=0} \omega=\frac{1}{k} \Omega^{(12)}$,
(b) $\operatorname{Res}_{u_{2}=0} \omega=\frac{1}{12}\left(\Omega^{(12)}+\Omega^{(13)}+\Omega^{(23)}\right)$

Basis of conformal blocks is given by
labelled trees

denoted by $\left\{p_{\lambda}\right\}$.
recall: $\sum_{1 \leqslant i<j<n} \Omega^{(i j)} \psi_{0}=-(k+2) \sum_{j=1}^{n} \Delta_{\lambda_{j}} \psi_{0}\left(\Delta_{\left.\lambda_{j}^{n}-\lambda_{j}\right)}^{*}\right.$
$\Rightarrow(a)$ and (b) are simultaneously diagonalized for the basis $\left\{p_{\lambda}\right\}$ with eigenvalues $\Delta_{\lambda}-\Delta_{\lambda_{1}}-\Delta_{\lambda_{2}}$
and $\Delta_{\lambda_{4}}-\Delta_{\lambda_{1}}-\Delta_{\lambda_{3}}$ respectively.
Proposition 2:
A basis of the space of horizontal sections of the conformal block bundle \mathcal{E} is written around $u_{1}=u_{2}=0$ as

$$
u_{1} \Delta_{\lambda}-\Delta_{\lambda_{1}}-\Delta_{\lambda_{2}} u_{2} \Delta_{4}-\Delta_{\lambda}-\Delta_{\lambda_{2}}-\Delta_{\lambda_{3}} \operatorname{l}_{\lambda}\left(u_{1}, u_{2}\right) \rho_{\lambda}
$$

for any λ such that each triple $\left(\lambda_{1}, x_{2}, \lambda\right)$ and $\left(\lambda_{1}, \lambda_{3}, \lambda_{4}\right)$ satisfies the quatum Clebsch-Gordan condition at level K. Here $h_{\lambda}\left(u_{1}, u_{2}\right)$ is a single-valued hol. function around $u_{1}=u_{2}=0$.
Proof:
Consider vertex operators

$$
\begin{aligned}
& \psi_{\lambda_{1} \lambda_{2}}^{\lambda}\left(\zeta_{1}\right): H_{\lambda_{1}} \otimes H_{\lambda_{2}} \rightarrow F_{\lambda} \\
& \psi_{\lambda_{\lambda_{3}}}^{\lambda_{4}}\left(\zeta_{2}\right): H_{\lambda} \otimes H_{\lambda_{3}} \rightarrow \bar{H}_{\lambda_{4}}
\end{aligned}
$$

The composition $\psi_{\lambda_{\lambda} \lambda_{3}}^{\lambda_{4}}\left(\psi_{\lambda_{1} \lambda_{2}}^{\lambda_{2}}\left(\zeta_{1}\right) \otimes i d_{H \lambda_{3}}\right)$ defined in the region $\left|\zeta_{2}\right|>\left|\zeta_{1}\right|>0$ is
written as

$$
u_{1}^{\Delta_{\lambda}-\Delta \lambda_{1}-\Delta_{\lambda_{2}}} u_{u_{2}}^{\Delta_{4}-\Delta_{\lambda_{1}}-\Delta_{\lambda_{2}}-\Delta_{\lambda_{3}} h_{\lambda}\left(u_{1}, u_{2}\right) p_{\lambda}}
$$

since a horizontal section of ε satisfies the $K Z$ equation $\nabla \psi_{0}=(d-\omega) \psi_{0}=0$. It follows from the form of w given in (*) that $h_{\lambda}\left(u_{1}, u_{2}\right)$ is holomorphic.

