on
$$Conf_n(C)$$
 by permutation of coordinates.
Then we have $B_n = \pi_i(X_n)$ where
 $Y_n = Conf_n(C)/S_n$.
 $\left[\begin{array}{c} Y_n \\ z_i = z_i \\ \vdots \\ a_i a_j \end{array}\right] \xrightarrow{e \pi_i(X_n)} \xrightarrow{e S_n} a_i a_j$
We have the exact sequence
 $I \longrightarrow P_n \longrightarrow B_n \longrightarrow S_n \longrightarrow I$
 $\pi_i(Conf_n(C), x_o)$
 P_n is also called "pure braid group".
We consider logarithmic differential I-forms
 $\omega_{ij} = dlog(z_i - z_i) = \frac{dz_i - dz_i}{z_i - z_i}, i \neq j$
defined on $Conf_n(C)$. They satisfy
 $\omega_{ij} \land w_{jk} + w_{jk} \land w_{ik} + w_{ik} \land w_{ij} = 0$ $log(z_k, k)$

called "Arnold relations", generators of
cohomology ring
$$H^*((cnfn(C), \mathbb{Z}))$$
.

Vet E be a trivial vector bundle over Confict)
with fiber $(V, \otimes V_1 \otimes \cdots \otimes V_n^*)$
 $= Hom_{\mathbb{C}}(V, \otimes V_1 \otimes \cdots \otimes V_n^*)$
Regard ω as a 1-form on Confin(C) with
values in End($V_1^* \otimes V_2^* \otimes \cdots \otimes V_n^*$). Define
connection on E by $\nabla = d - \omega$.
 \rightarrow flat since $dw + \omega \wedge w = 0$
 \rightarrow horizontal sections are solutions
of KZ -eq : $\nabla \Phi = 0$.
Holonomy:
Xet γ be a loop in Confin(C) with base
point x_0 . Then system of solutions $(\Phi_1, ..., \Phi_m)$
trasforms along γ as
 $(\Phi_1, ..., \Phi_m) \Theta(\gamma), m = \dim V_1 \times ... \times \dim V_n$
by a matrix $\Theta(\gamma)$ only depending on the
homotopy class of γ since ∇ is flat

connection.

$$\rightarrow 0: P_n \rightarrow GL(V_i^* \otimes V_i^* \otimes \cdots \otimes V_n^*)$$

with parameter $K:$ "monodromy representation
of KZ equation. We have
 $O(\sigma z) = O(\sigma)O(z) \quad \forall \ \sigma, \tau \in P_n.$
Thus we have arrived at the following:
Proposition 1:
For any complex semisimple Lie algebra
of and its representations $\rho_i: \sigma_j \rightarrow End(V_i),$
 $1 \in j \leq n,$ the holonomy of the KZ
connection ∇ gives linear representation
of the pure braid group with a
parameter K. In the case $V_i = V_2 = \cdots = V_n = V_i$
the symmetric group Sn acts diagonally
on the total space $Conf_n(C) \times (V^{\otimes n})^*$, where
 $action of Sn on (V^{\otimes n})^*$ is given by
 $(\phi \cdot \sigma)(\sigma_i \otimes \cdots \otimes \sigma_n) = \phi(\sigma_i \sigma_i) \otimes \cdots \otimes \sigma_{\sigma_n})$
for $\phi \in (V^{\otimes n})^*, \sigma \in S_n$ and $\sigma \in V_i, 1 \leq j \leq n$.

and perform coordinate transformation $J_{1} = u_{1}u_{1}, \quad J_{2} = u_{2}$ $\left(or \quad u_{1} = \frac{2_{1} - 2_{2}}{2_{1} - 2_{2}}, \quad u_{2} = 2_{3} - 2_{1} \right)$ $\longrightarrow \omega = \frac{1}{K} \left(\frac{\Omega^{(12)}}{U_1} dy_1 + \frac{\Omega^{(12)} + \Omega^{(13)} + \Omega^{(23)}}{U_1} dy_1 + \omega_1 \right) (*)$ (see Prop. 5, §6) where we is hol. I-form around u=4,=0. We have (a) $\operatorname{Res}_{u_{1=0}} \omega = \frac{1}{k} \Omega^{(12)}$, (b) Res₄₂₌₀ $\omega = \frac{1}{12} \left(\Omega^{(12)} + \Omega^{(13)} + \Omega^{(13)} \right)$ denoted by {p}} recall: $\sum_{1 \leq i < j < n} \Omega^{(ij)} \mathcal{U}_{o} = -(k+2) \sum_{j=1}^{i} \Delta_{\lambda_{j}} \mathcal{U}_{o} \left(\Delta_{\lambda_{j}} - \lambda_{j} \right)$ => (a) and (b) are simultaneously diagonalized for the basis {pa} with eigenvalues da-da, -daz

and $\Delta_{2y} - \Delta_{2} - \Delta_{2}$ respectively. Proposition 2: A basis of the space of horizontal sections of the conformal block bundle E is written around U,= 4,=0 as $u_{\lambda}^{\Delta_{\lambda}-\Delta_{\lambda_{1}}-\Delta_{\lambda_{2}}}u_{\lambda}^{\Delta_{\mu}-\Delta_{\lambda}-\Delta_{\lambda_{2}}-\Delta_{\lambda_{3}}}h_{\lambda}(u_{\lambda},u_{\lambda})\rho_{\lambda}$ for any 2 such that each triple (21,22,2) and (A, A, A4) satisfies the quatum Clebsch-Gordan condition at level K. Here hy (u, u) is a single-valued hol. function around u= u2=0. Proof: Consider vertex operators $\mathcal{Y}_{\lambda,\lambda_{1}}^{\lambda}(\boldsymbol{z}_{1}):\mathcal{H}_{\lambda_{1}}\otimes\mathcal{H}_{\lambda_{2}}\longrightarrow\mathcal{H}_{\lambda_{1}}$ 424 (J2): H2 H23 -> H24 -The composition $\mathcal{Y}_{AA}^{\lambda_{4}}(\mathcal{Y}_{A\lambda_{1}}^{\lambda}(\mathcal{Y}_{\lambda_{1}\lambda_{2}}^{\lambda}(\mathcal{Y}_{\lambda_{1}\lambda_{2}}^{\lambda}(\mathcal{Y}_{\lambda_{1}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}}(\mathcal{Y}_{\lambda_{2}\lambda_{2}}^{\lambda_{2}})(\mathcal{Y$ defined in the region 152/2/51/20 is

written as

$$u_1^{A_2-A_3} - A_2 \quad u_2^{A_2-A_3} - A_3 - A_3 \quad h_3(u_1,u_2) P_3$$

since a horizontal section of \mathcal{E} satisfies
the KZ equation $\nabla \mathcal{V}_6 = (d-w)\mathcal{V}_6 = 0$.
It follows from the form of w given in
(*) that $h_3(u_1,u_2)$ is holomorphic.